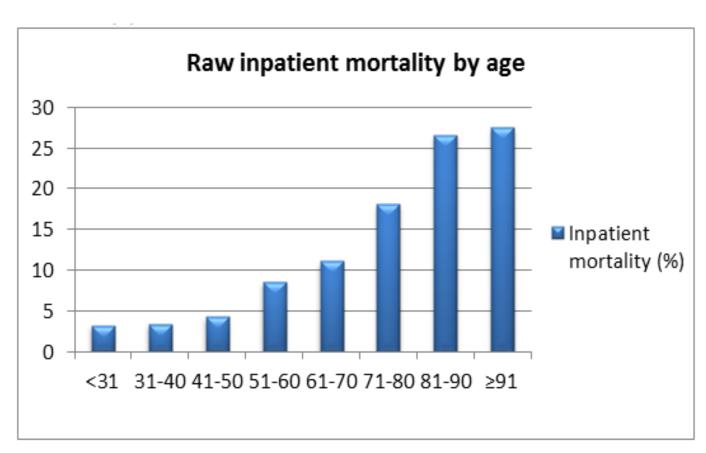


The Role of the Perioperative Geriatrician

2nd London Critical Care & **Perioperative Medicine Meeting** 9th October 2019


Dr David Shipway FRCP Consultant Physician & Perioperative Geriatrician Honorary Senior Clinical Lecturer Southmead Hospital, North Bristol NHS Trust david.shipway@nbt.nhs.uk

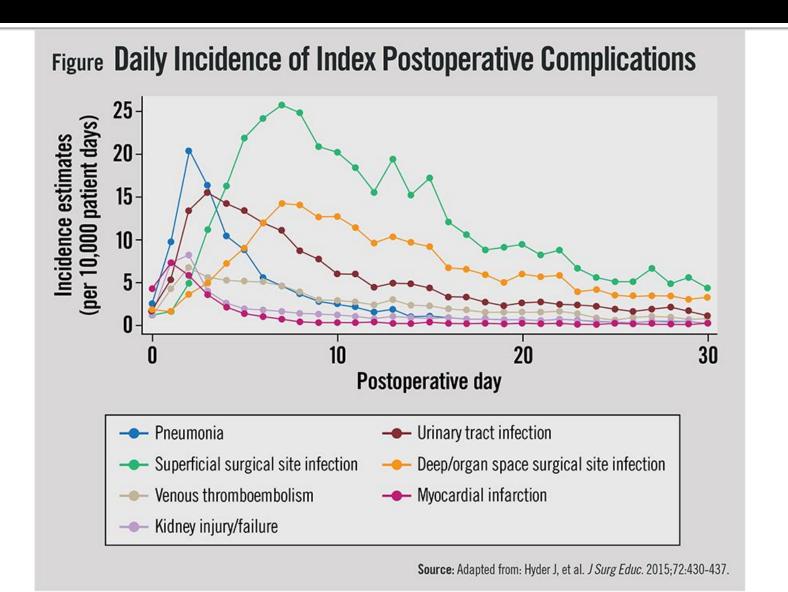
Overview

- What happens to older surgical patients?
 - The case for change...
- How can Geriatrics help?
 - Enhanced Pre-assessment
 - Multimodal Prehabilitation
 - Post-op Ward Support
 - Discharge Planning

What happens to old people after surgery?

What sort of complications occur?

Resp	CVS	CNS	T -emb	ol <mark>i</mark>	An leak	
5%	0.8%	0.2%	1%		4%	
10%	2%	0.6%	2%		5%	
12%	4%	1%	2%		4%	
15%	4%	1%	2%		3%	
<0.0001	<0.0001	<0.0001	0.0004		0.2607	
	5% 10% 12% 15%	5% 0.8% 10% 2% 12% 4% 15% 4%	5% 0.8% 0.2% 10% 2% 0.6% 12% 4% 1% 15% 4% 1%	5% 0.8% 0.2% 1% 10% 2% 0.6% 2% 12% 4% 1% 2% 15% 4% 1% 2%	5% 0.8% 0.2% 1% 10% 2% 0.6% 2% 12% 4% 1% 2% 15% 4% 1% 2%	5% 0.8% 0.2% 1% 4% 10% 2% 0.6% 2% 5% 12% 4% 1% 2% 4% 15% 4% 1% 2% 3%


	3oday mortality		1 year mortality		5year mortality	
	with	without	with	without	with	without
Any complication	13.3%	0.8%	28.1%	6.9%	57.6%	39.5%

When do complications occur?

		ic Interval		
Variable	Day 1	Days 1-3	Days 4-7	Days 8-30
Cardiac				
Myocardial infarction	21 (47)	17 (38)	5 (11)	2 (4)
Congestive heart failure	6 (17)	16 (46)	6 (17)	7 (20)
Hypotension	13 (43)	5 (17)	4 (13)	8 (27)
Cardiac arrhythmia	7 (33)	7 (33)	3 (14)	4 (19
Angina	470/ 0		2 (40)	0
Pulmonary	17% Complicat	tions occur Day	1	
Respiratory failure	84% Day 2+	-	9 (7)	12 (10
Pneumonia	04 % Day 2+	••	26 (38)	16 (24
Respiratory depression	11 (55)	2 (10)	2 (10)	5 (25
Pulmonary embolus	0	1 (50)	1 (50)	0
Other				
Sepsis	0	4 (11)	7 (18)	27 (71
Renal failure	2 (13)	5 (31)	0 ` ´	9 (56
Cardiovascular accident	0 `	4 (24)	4 (24)	9 (52
Gastrointestinal tract bleeding	3 (20)	4 (27)	3 (20)	5 (33
Total	74 (17)	185 (43)	72 (17)	104 (24

^{*}Data are given as the number (percentage) of patients. A patient may have experienced the same or another complication in more than 1 period.

When do complications occur?

Impact of Geriatric Syndromes

Br J Surg. 2010 Feb;97(2):273-80. doi: 10.1002/bjs.6843.

Risk factors and incidence of postoperative delirium in elderly patients after elective and emergency surgery.

Ansaloni L1, Catena F, Chattat R, Fortuna D, Franceschi C, Mascitti P, Melotti RM.

Author information

Abstract

BACKGROUND: This study eva factors associated with POD, and

METHODS: : Patients aged over significantly associated with POE associated with POD.

RESULTS: : A total of 351 patien emergency operations). Indepen impairment, psychopathological a patients with POD versus 8 (rang (P = 0.021).

CONCLUSION: The incidence of

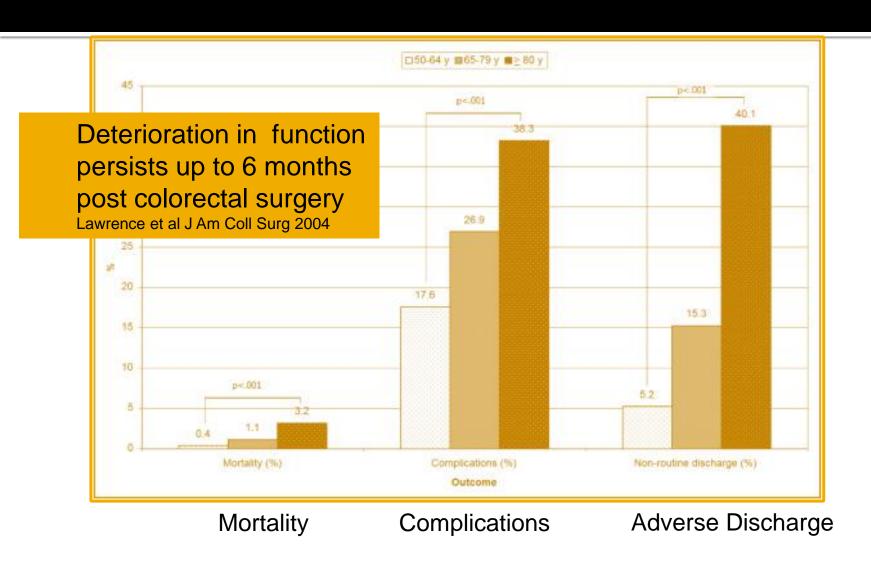
- Incidence up to 17.9% in age >65
- Median LOS 21 days (vs 8 days)
- Mortality 19% (vs 8.4%)

g general surgery, the risk

ntrol study. Risk factors hose independently

er cent (17.9 per cent for perative cognitive (range 1-75) days for nd 8.4 per cent respectively

to an increase in hospital

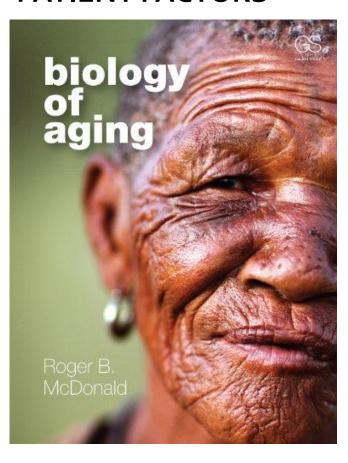

stay and perioperative mortality. To minimize POD, associated risk factors of co-morbidity, cognitive impairment, psychopathology and abnormal glycaemic control must be identified and treated.

Functional decline has an organic basis

- 18 days immobilisation in fit healthy male
- 40% loss muscle strength 1 week
- Parry et al, Extrem Physiol Med 2015

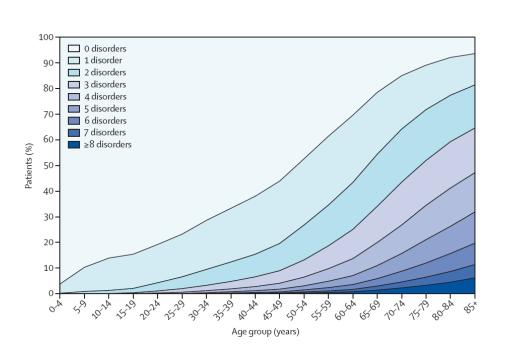
Functional Decline & Complex Discharge

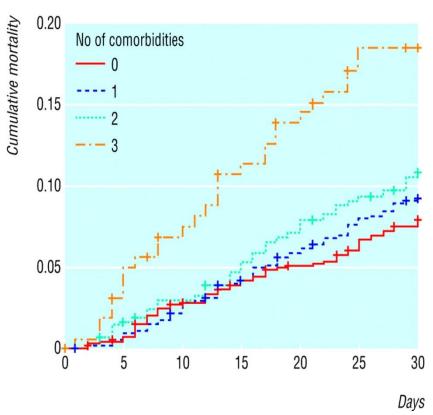
Kuy et al. Am J Surg 2011; 201(6): 789-796


We're all familiar with the problem

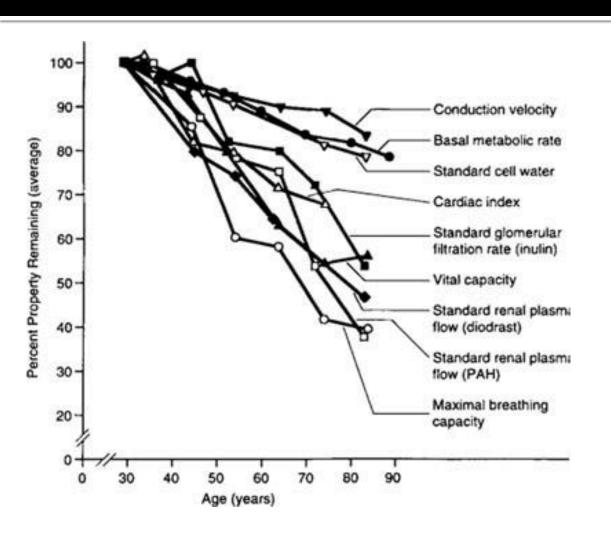
DAILY&EXPRESS

Why are the elderly at higher risk?

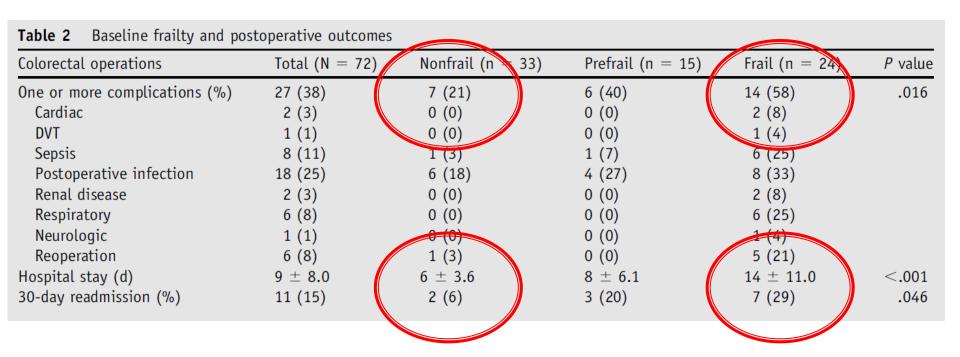

PATIENT FACTORS



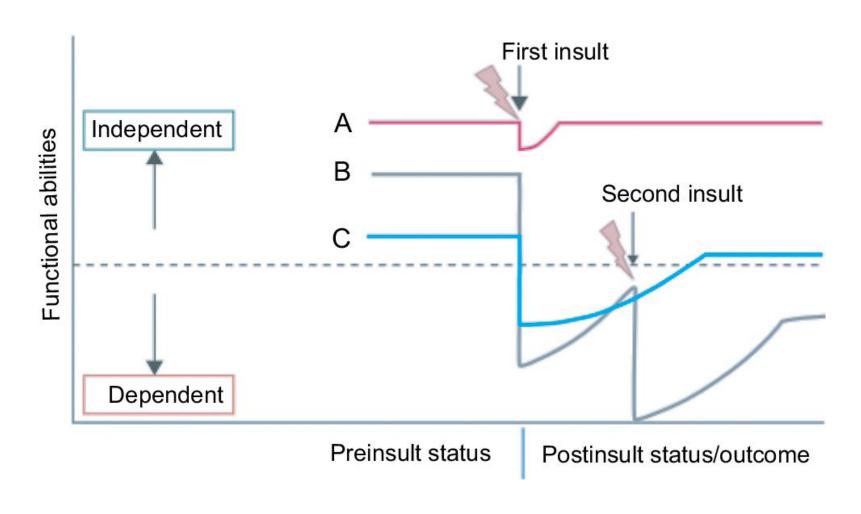
SERVICE FACTORS


The impact of multimorbidity

Roche et al. BMJ 2005


Physiology of Ageing & Frailty

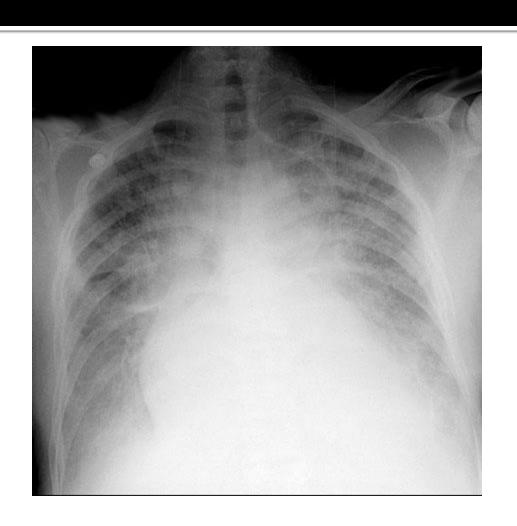
- -Decline in measurable parameters
- -Preservation of organ *function*
- -Reduced physiological reserve
- -Concept of Homeostenosis


Frailty = Reduced physiological reserve across *multiple* organ systems

Frailty and Surgical Outcomes

Approx 3-fold complications >Double LOS

Impact of surgery (and complications) in frail


Service Related Factors

- Surgical Ward Rounds
 - Usually senior
 - Highly focussed
 - Time pressured
- Concept of false reassurance?
- Reactive care

 After o900 am, limited senior availability – clinic, theatre

Post-op Crisis – call the Med Reg?

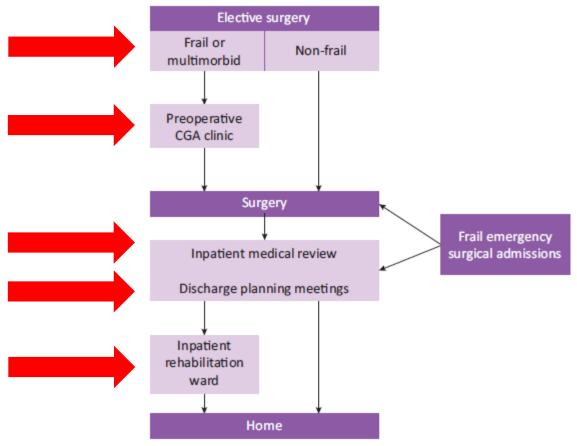
Name:		CXA&E
S/N:		09032295
Measured (3	37.0°C)	
рН	(
pCO ₂	↓ 2.9	kPa
pO2	↓ 7.7	kPa
Na	138	mmol/L
K ⁺	↑ 6.5	mmol/L
CI	↓ 94	mmol/L
Ca ⁺⁺	↓ 1.04	mmol/L
Glu	5.6	mmol/L
Lac	(↑ 19.2)	mmol/L
CO-Oximetr	y	
tHb	149	g/L
O ₂ Hb	↓ 79.9	%
СОНЬ	↑ 1.6	%
MetHb	1.5	%
HHb	↑ 17.0	%
sO ₂	82.5	%
Derived		
BEecf	(+-29.4)	mmol/L
HCO ₃ std	(2.1)	mmol/L
Hct(c)	45	%
Operator Er	ntered	
Temp	37.0	°C

What's the discharge plan?

Where's the physio and occupational therapist? I want to send this patient home.

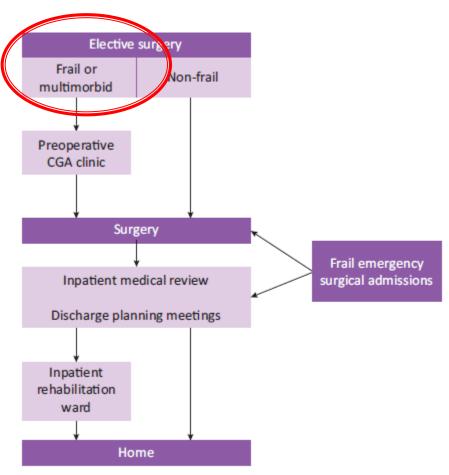
Not so fine for her....

United Nations, Population Division 2012, Christensen, Lancet 2009.

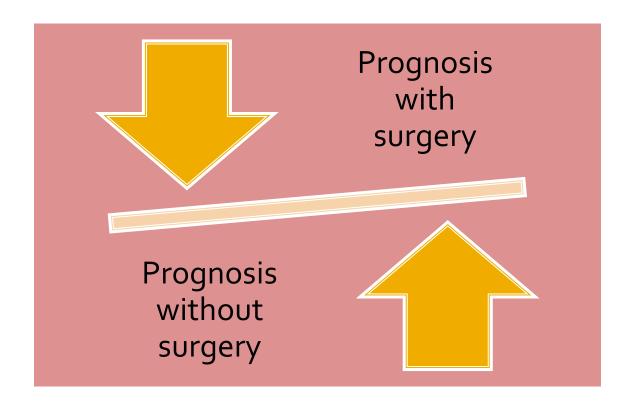

Surgeons beginning to realise they can't do it all?

- 70% describe inadequate training in mx of complex older patients
- 85% often need medical advice
- 68% difficulty in accessing medical support
- 92% felt need for closer collaboration

Ideal components of a collabora geriatric medicine-surgical servi	
Medical Optimisation	79%
Mental Capacity Assessment	71%
Quantifying Medical Risks of Surgery	64%
Managing Medical Complications	87%
Communication with patients and families	38%
Post-op rehab/ discharge planning	92%


Shipway et al J Surg Ed 2015

Patient Pathway Opportunities for Intervention


Fig 1. Model of care - embedded geriatric surgical liaison. CGA = Comprehensive Geriatric Assessment

Pre-operative: enhanced case selection

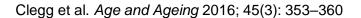
Fig 1. Model of care - embedded geriatric surgical liaison. CGA = Comprehensive Geriatric Assessment

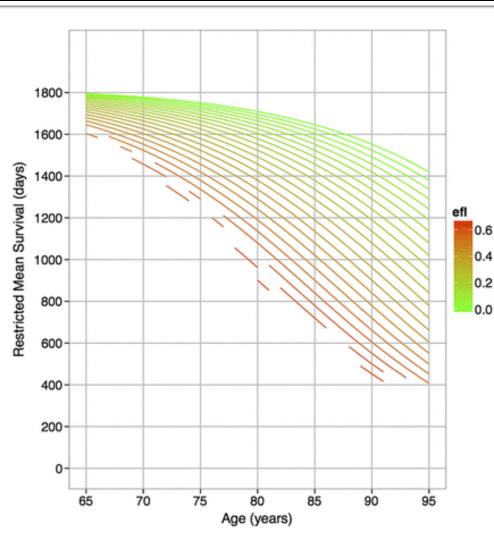
Enhanced Case Selection

Support shared decision making

Life Expectancy Without Surgery

Life Expectancy in the UK				
Age in 2014	Men	Women		
65	18.9	21.4		
75	11.7	13.5		
85	6.1	7.2		
90	4.3	5.0		
Office for National Statistics , UK, 2012.				


But...


- Figures are averages across whole population
- Doesn't account for specific disease states

 Unlikely to be accurate for many surgical patients

Life Expectancy in Frailty

Outcome	Internal validation			
	Fit	Mild frailty	Moderate frailty	Severe frailty
1 year mortality	1,721	3,263	2,413	971
	1.7%	4.7%	10.6%	19.1%
3 year mortality	5,693	9,633	6,530	2,418
	5.7%	14.0%	28.6%	47.5%
5 year mortality	10,263	16,271	10,160	3,540
	10.2%	23.6%	44.5%	69.5%
1 year emergency hospitalisation	4,406	6,278	3,519	1,276
	4.4%	9.1%	15.4%	25.1%
3 year emergency	13,483	16,839	8,198	2,451
hospitalisation	13.4%	24.3%	35.9%	48.1%
5 year emergency	24,161	27,163	12,051	3,151
hospitalisation	24.0%	39.3%	52.8%	61.9%
1 year nursing	270	570	464	195
home admission	0.3%	0.8%	2.0%	3.8%
3 year nursing	1,151	2,087	1,476	525
home admission	1.1%	3.0%	6.5%	10.3%
5 year nursing	2,692	4,355	2,647	842
home admission	2.7%	6.3%	11.6%	16.5%

Surgical Risk Calculator

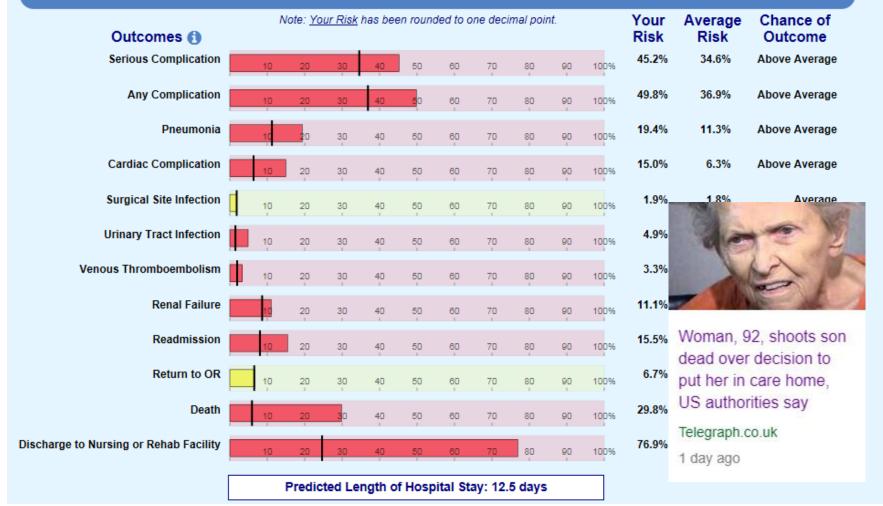
Risk Calculator Home Page

About

FAQ

ACS Website

ACS NSQIP Website

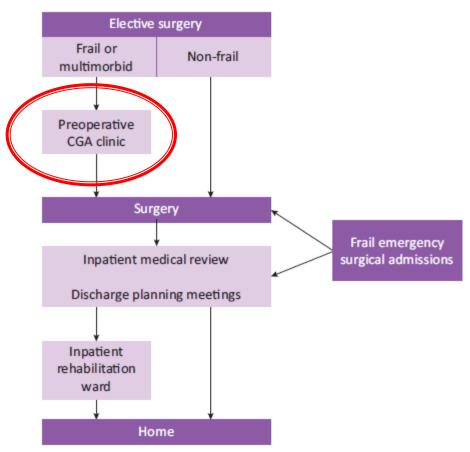

Procedure: 34830 - Open repair of infrarenal aortic aneurysm or dissection, plus repair of

associated arterial trauma, following unsuccessful endovascular repair; tube prosthesis

Risk Factors: 85 years or older, Partially dependent functional status, Severe systemic

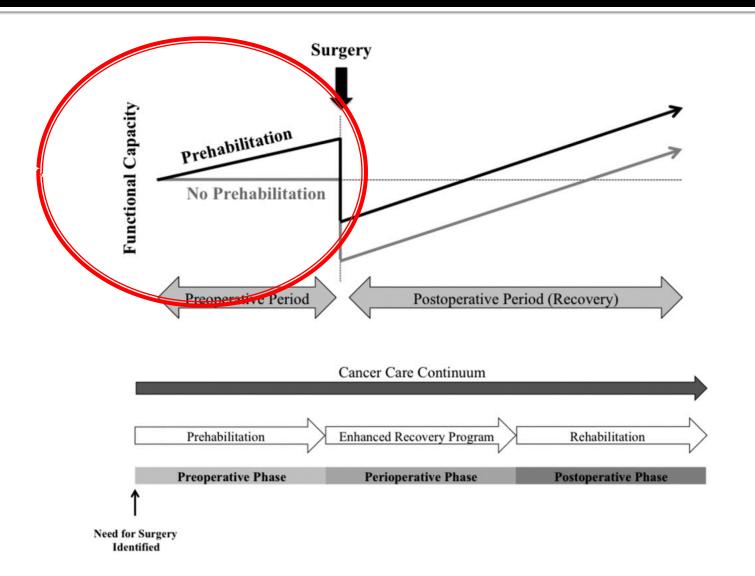
disease/constant threat to life, Diabetes (Oral), HTN, Dyspnea with moderate exertion

Change Patient Risk Factors



Example – Frail 82 yo 6.5 cm AAA for EVAR

Risk of Rupture	Surgical Risk	Life Expectancy
5-10% per annum	Mortality 8%	Office for National Statistics = 8 years
	Complications 22%	Electronic Frail Scale 2.5 years
	Discharge to long tern rehab or permanent institution 42%	


We influence patient appreciation of risk significantly

Preoperative: Prehab & Medical Optimisation

Fig 1. Model of care - embedded geriatric surgical liaison. CGA = Comprehensive Geriatric Assessment

Prehabilitation Programmes

But what about....

TABLE 1. Risk Factors According to the Classifications of Goldman, Lee, and Boersma for Adverse Postoperative Outcome in Patients Undergoing All Types of Noncardiac Surgical Procedures^a

Goldman et al.⁵ 1977 Lee et al.⁷ 1999 Boersma et al.⁸ 2005

Life-threatening and fatal cardiac complication

Major adverse cardiac event

Cardiovascular death

tive heart failure

ic heart disease

ovascular disease

dependent diabetes mellitus

Third heart sound or jugular venous of Myocardial infarction in the preceding >5 PVCs per minute at any time before Other than sinus rhythm or presence Age over 70 years
Intraperitoneal, intrathoracic, or aorti

Emergency operation

Important valvular aortic stenosis Poor general medical condition

No. patients in original report: 1001

Heart Disease

- Lung Disease
- Renal Failure
- Anaemia

al risk according to the AHA/ACC sification 10 years, 40-50, 50-60, 60-70, 0, >80

ailure

No. patients in original report: 2893 AUC in original report: 0.77 No. patients in original report: 108 593 AUC in original report: 0.85

^aPVC indicates premature ventricular contraction; PAC, premature atrial contraction.

And these?

OTHER PATIENT FACTORS...


- Cirrhosis
- Stroke
- Diabetes Mellitus
- Obesity
- OSA
- Parkinson's Disease
- Myasthaenia Gravis
- Depression
- Schizophrenia
- Drugs

Illustration of Parkinson's disease by William Richard Gowers, first published in A Manual of Diseases of the Nervous System (1886)

Pre-operative CGA Clinic

Risk Assessment, Communication & Intervention

Detailed Perioperative Plans

Standardised Evidence-Based Perioperative Plans for:

Prevention Respiratory Complica

Arrhythmia Prevention

IHD and Anti-platelets

PPM & ICD

CKD

Parkinson's

Myasthaenia Gravis

Stroke

Diabetes

Chronic Liver Disease

Alcohol Withdrawal

Anticoagulants

Long-term Steroids

Delirium Avoidance

Nutrition & Anaemia

Jehovah's Witnesses

Cognitive Impairment and Mental

Frailty and Complex Discharge

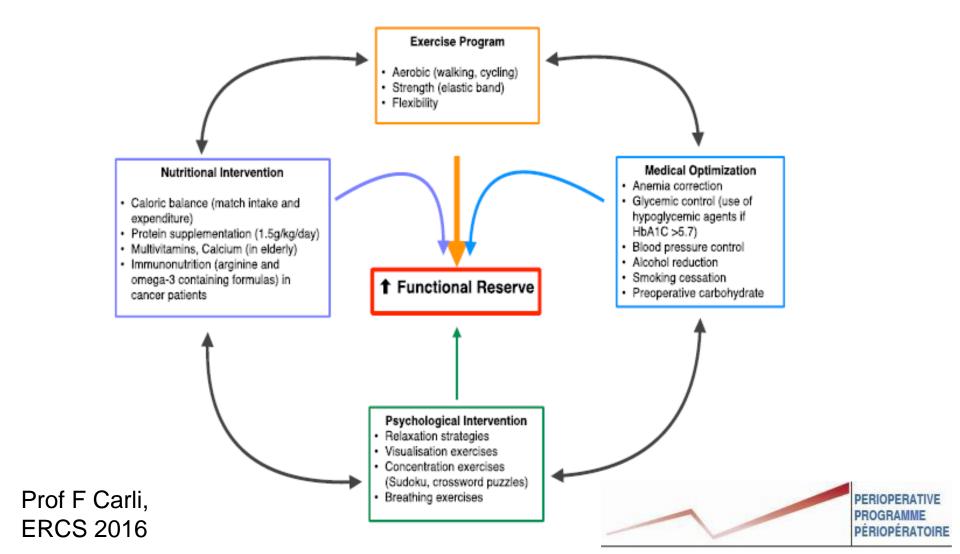
Risk of Postoperative Delirium

The risk of delirium is elevated.

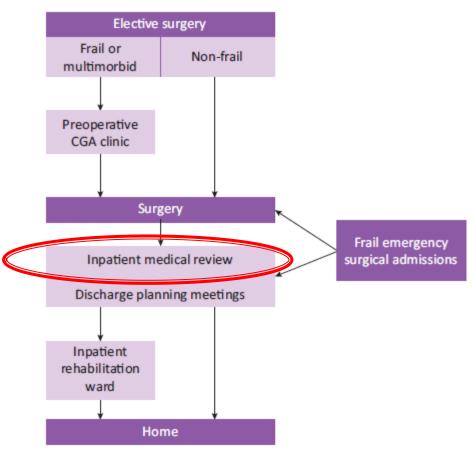
Plan:

Delirium reduction strategies:

- a. Anaesthetic review to allow tailoring of anaesthetic technique.
- b. Please follow delirium guidelines post-operatively.
- c. Avoid deliriogenic drugs (eg benzodiazepines, sedatives, anti-histamines, tramadol, longacting opiates).
- d. Maintain adequate hydration and avoid constipation.
- e. Falls risk assessment
- f. Maintain orientation and day-night routine
- g. Sensory impairments are optimised (give pt glasses / hearing aids)
- h. Unrestricted ward access to patient for immediate friends and family.
- j. Sedation only if poses significant threat to self or others.

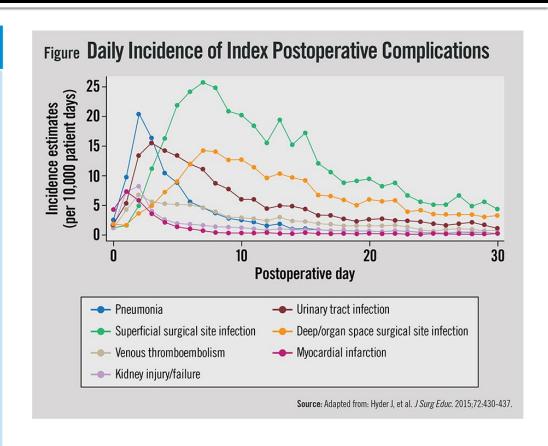

Parkinson's disease.

This is a risk factor for falls, delirium, impaired swallow and aspiration pneumonia. Plan:


- To receive oral medication for Parkinson's on morning of surgery with sips of water at 0600am (even if nil by mouth from 0200).
- NG tube sited for medications whilst nil by mouth. Use OPTIMAL calculator for dose conversion.
- If unable to use NG tube, use OPTIMAL calculator to convert of oral medication to Rotigotine patch.
- Regular assessment of swallow. This is vulnerable to deterioration and NG feeding may be required.
- e. Avoid haloperidol and metoclopramide at all times.

Multimodal Prehab

Inpatient Rounds

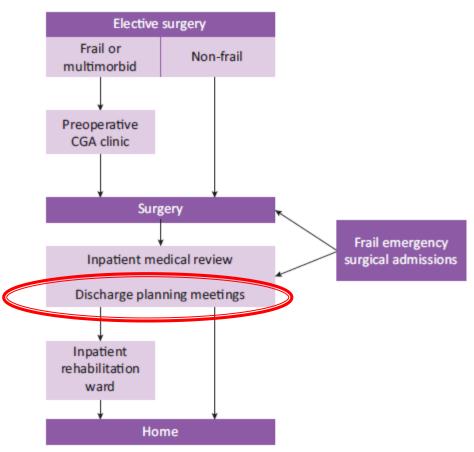

Fig 1. Model of care - embedded geriatric surgical liaison. CGA = Comprehensive Geriatric Assessment

What do we actually do?

Table 4. Clinical indications for inpatient medical review

Perioperative medical issues addressed	Percentage of patients
Fluid balance (CCF; AKI)	20.1% (n=48)
Cardiology (arrhythmia; ischaemia)	16.7 % (n=39)
Delirium	16.3 % (n=38)
Respiratory (HAP; PE; pleural effusion)	14.6% (n=34)
Sepsis	13.3 % (n=31)
Gastroenterology (constipation; colitis; hepatitis; decompensated chronic liver disease)	7.3% (n=17)
Haematology (anaemia; coagulation; thrombocytopaenia)	7.3% (n=17)
Endocrinology (electrolyte derangement; diabetes)	6.9% (n=16)
Neurology (seizures; stroke; TIA)	2.6% (n=6)
Medication rationalisation	11.6% (n=27)
Pain management	1% (n=3)
Nutritional optimisation	7.7 % (n=18)
Communication with family	30.5% (n=71)
Surgical HDU review (vasopressors; NIV supervision)	23.6% (n=55)
De-escalation (removal of lines; catheters; therapeutics)	15% (n=35)
Discharge planning	48.1% (n=112)

AKI = acute kidney injury; CCF = congestive cardiac failure; HAP = hospital acquired pneumonia; HDU = high dependency unit; NIV = non-invasive ventilation; PE = pulmonary embolism; TIA = transient ischaemic attack


Shipway et al. Embedded geriatric surgical liaison is associated with reduced inpatient length of stay in older patients admitted for gastrointestinal surgery. Future Healthcare Journal 2018 Vol 5, No 1: 1–9.

Operational Details

- Daily review is key
 - 1400 hrs Mon-Fri
- Allows manageable caseload
 - Eg 2-4 patients per day
 - Detailed reviews
- Opportunity for follow up and continuity

- Always see with FY1-2
 - Improves bilateral communication
 - Accountability
 - Follow through of plan
- Education and Training
 - Protect existing staff resource

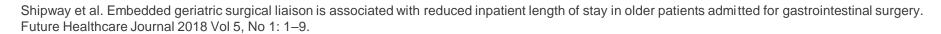
Postoperative: Proactive Discharge Planning

Fig 1. Model of care - embedded geriatric surgical liaison. CGA = Comprehensive Geriatric Assessment

Proactive Discharge Planning

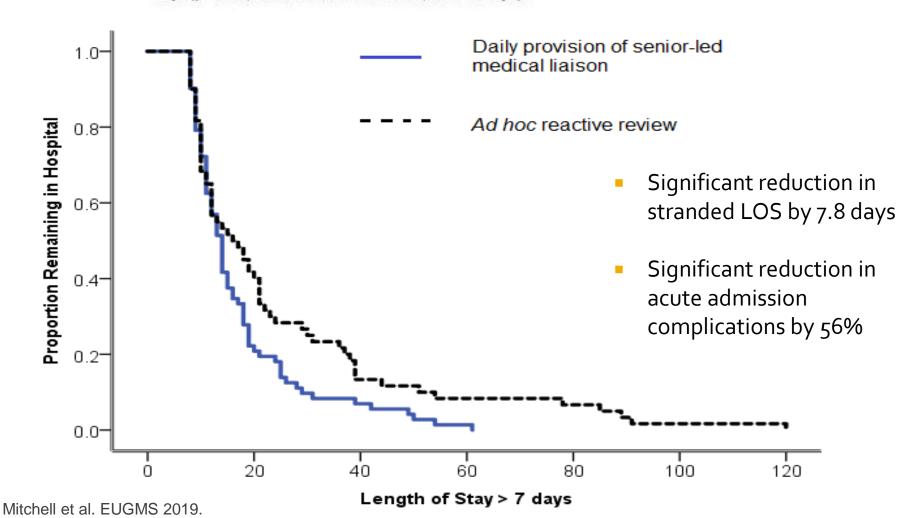
- Once weekly meeting
 - Monday 1200-1300
- Attended by:
 - Consultant Surgeon
 - Consultant Geriatrician
 - Junior doctor(s)
 - Nurse in charge
 - OT
 - Physio
 - Case Manager
- Update on medical status
 - Challenge need for ongoing inpatient care?

- Identify discharge destination
 - Home v rehab v repat v NH
- Set anticipated date for discharge
- Identify barriers to discharge
 - Don't tolerate nonsense
 - Calculated risk-taking
 - Provide team responsibility
 - Manage patient/family expectations realistically


Role of Perioperative Geriatricians

<u>Pre-operative</u>	Post-operative
 Inform decision-making process Increase safety of surgery Coordination Role 	 Clear referral pathway to medical team Focussed discharge planning
Medical risk assessment and prediction of complications	Proactive response to medical complications Embedded medical opinion +/- escalation
Diagnosis and optimisation of co-morbidity	Ward presence for junior doctors - Education and training
Assessment of functional reserve and frailty	Liaison with therapists to oversee rehab
Assessment of undiagnosed cognitive problems and mental capacity	Discharge planning MDM Board rounds
Assessment of social problems and forward planning, expectation management	=Systems Change

Does it work? Impact on Length of Stay in GI Surgery


Table 4: Mean Length of Stay (LOS) Before and After Service Implementation

	All GI Surgery		Emergency GI Surgery		Elective GI Surgery				
Age	>60	>70	>75	>60	>70	>75	>60	>70	>75
Mean LOS	10.6	10.5	10.3	11.1	10.3	9.01	9.5	10.9	13.3
Pre- Service	(=203)	(=129)	(=79)	(=137)	(=91)	(=57)	(=66)	(=38)	(=22)
(n=)									
Mean LOS	7.5	7.2	7.2	6.7	6.9	6.3	8.2	7.4	8.14
Post- Service	(=479)	(=301)	(=189)	(=236)	(=150)	(=99)	(=233)	(=146)	(=84)
(n=)									
Mean OS Reduction (days)	3.1	3.3	3.0	4.3	1.5	2.75	1.3	3.4	5.2
P-value	0.006	0.009	0.017	0.006	0.029	0.029	0.18	0.062	0.066

Vascular LOS Reduction in Stranded Patients

Figure 1b: Kaplan-Meier Survival Curve. Reduction in LOS was seen for patients admitted for >7 days (p=0.025, 95% Cl for mean difference, 1.5 to 14 days).

Engaging the Executive- Bed Impact

BED IMPACT MODELLING- BEN HEWLETT, AGM MEDICINE

	Pt. numbers 2.7 day LOS improvement		2 day LOS improvement		
Vascular	10 patients	5 patients	10 patients	5 patients	
General Surgery	10 patients	5 patients	10 patients	5 patients	
Major Trauma	4 patients	4 patients	4 patients	4 patients	
Total patients	24 patients per week	14 patients per week	24 patients per week	14 patients per week	
Assuming 52 weeks per year	1,248 patients	728 patients	1,248 patients	728 patients	
Bed days saved (based on LOS impact noted)	3,369 bed days saved	1,965 bed days saved	2,496 bed days saved	1,456 bed days saved	
Bed impact (whole year effect)	9.2 beds	5.3 beds	6.8 beds	4 beds	

Approx. 2.8 beds per year for Vascular? Elective caseload impact?

NELA Mortality & Discharge Destination

6 Month Review All Emergency Laparotomies Aged >70	Pre-Intervention (n=31)	Post-Intervention (n=50)
Geriatrician Review	16% (n=5)	86% (n=43)
Discharge to own home	68% (n=21)	76% (n=38)
Inpatient Mortality	23% (n=7)	14% (n=7)

[&]quot;After adjustment for age, sex, cardiac and respiratory comorbidity post-operative geriatrician review is associated with reduced risk of 30-day mortality by 74% as represented by a hazard ratio of <u>0.259;</u> CI 0.076–0.833; p=0.031 "

NELA: Impact of Geriatrician Review

BJA British Journal of An

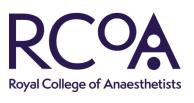
Organisational factors and mortality after an emergency laparotomy: multilevel analysis of 39 903 National Emergency Laparotomy Audit patients

Available online 3 October 2018

C.M. Oliver | M.G. Bassett | T.E. Poulton | I.D. Anderson | D.M. Murray | M.P. Grocott | S.R. Moonesinghe |

- Postoperative geriatric medicine review was associated with substantially lower mortality in older (≥70 yr) patients
- OR: 0.35; 95% CI: 0.29–0.42

Medical Liaison Seems to Work



The Kings Fund>

Future Healthc J. 2018 Jun;5(2):108-116. doi: 10.7861/futurehosp.5-2-108.

Embedded geriatric surgical liaison is associated with reduced inpatient length of stay in older patients admitted for gastrointestinal surgery.

Shipway D1, Koizia L2, Winterkorn N2, Fertleman M3, Ziprin P4, Moorthy K5.

Aging Clin Exp Res. 2018 Mar;30(3):277-282. doi: 10.1007/s40520-017-0886-5. Epub 2018 Feb 6.

Geriatricians and the older emergency general surgical patient: proactive assessment and patient centred interventions. Salford-POP-GS.

Vilches-Moraga A1.2, Fox

Br J Surq. 2017 May;104(6

Randomized cli surgery.

Partridge JS1,2, Harari D

BJU Int. 2017 Jul;120(1):12

Evaluation and surgical patien

Braude P1, Goodman A2

Best Practice Tariffs

- Orthogeriatrics
- Major Trauma new
- NFI A 2020-21?

Anaesthesia, 2014 Jan;69 Suppl 1:8-16, doi: 10.1111/anae.12494

The impact of pre-operative comprehensive geriatric assessment on postoperative outcomes in older patients undergoing scheduled surgery: a systematic review.

Partridge JS1, Harari D, Martin FC, Dhesi JK.

Age Ageing. 2007 Mar;36(2):190-6. Epub 2007 Jan 27.

Proactive care of older people undergoing surgery ('POPS'): designing, embedding, evaluating and funding a comprehensive geriatric assessment service for older elective surgical patients.

Harari D1, Hopper A, Dhesi J, Babic-Illman G, Lockwood L, Martin F.

ular

Engaging the Executive- Coding Income

- Collaboration with Clinical Coding
- Study of tariff income before/after medical summary
- Medical summaries generated:
 - Additional secondary diagnoses
 - Additional complications (eg AKI, hyponatraemia)

- Mean uplift figure =
 <u>£740 per patient</u>
- £34,000 <u>additional</u> income for 47 patients studied
- Additional £384,800
 per annum for 10 patients
 seen per week.

Financial Viability

Major Trauma Best Practice Tariff

Geriatrician Frailty Scoring age Age >65; ISS >15

295 patients seen; 120 qualified for BPT April-August 2019

94.6% success rate

16 misses (9 our fault:)

Level 2 BPT payment is £2819 per patient

L2 BPT income Apr-Aug 19 = £338,220

Projected income generated directly by us for the trust over 12 months?

=£831,605

Qualitative Analysis- What Consultant Surgeons Say

- I have nothing but praise for the complex care service. I am now referring patients into the clinic with conditions other than colorectal cancer. They have found the second opinion very helpful in their decision making process.
- The input of a specialist in frailty and the elderly is proving to have enormous benefit to the delivery of a high quality vascular service. This has now **been incorporated within our AAA pathway** and **recognised as a core member** of the MDT for vascular surgery.
- The work that we are doing in this area has been recognised as best practice for this patient group. It is reducing both hospital length of stay and re-admission rates.
- Since the presence of the Complex care team on the vascular ward, the Foundation Programme doctors have been far better supported in managing a complex patient group with significant co-morbidities.
- Being able to compare to my past 5 years as a consultant in a unit with no complex medical care I can't stress how useful this is to both patients and staff. In my opinion, the single biggest difference to care in this unit which makes things better for the patients is this service.
- The preoperative assessments make our decision making far easier as we can risk stratify patients more easily. It saves lives and improves quality of life by reducing complications.
- I have no doubts that it significantly improves the patient outcomes, shortening length of stay and helping patients
 get home after surgery or trauma, for all our emergency surgery and trauma patients.

Summary

- Changing surgical population
- Complications occur late after surgery- these are typically medical
- Role for Geriatricians throughout pathway of frail or comorbid:
 - Preoperative Case Selection, Risk
 Assessment & Shared Decision Making
 - Preoperative Optimisation
 - Postoperative Medical Review
 - Postoperative Discharge Planning
- There is an emerging evidence base to support these models

A Surgical Operation. Reginald Brill 1934